题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4069
Problem Description
Today we play a squiggly , The objective is to fill a 9*9 grid with digits so that each column, each row, and each of the nine Connecting-sub-grids that compose the grid contains all of the digits from 1 to 9. Left figure is the puzzle and right figure is one solution. Now, give you the information of the puzzle, please tell me is there no solution or multiple solution or one solution.
Input
The first line is a number T(1<=T<=2500), represents the number of case. The next T blocks follow each indicates a case. Each case contains nine lines, Each line contains nine integers. Each module number tells the information of the gird and is the sum of up to five integers: 0~9: '0' means this gird is empty, '1' - '9' means the gird is already filled in. 16: wall to the up 32: wall to the right 64: wall to the down 128: wall to the left I promise there must be nine Connecting-sub-grids, and each contains nine girds.
Output
For each case, if there are Multiple Solutions or no solution just output "Multiple Solutions" or "No solution". Else output the exclusive solution.(as shown in the sample output)
题目大意:给一个不规则的9阶数独,问是否有唯一解,是则输出。
思路:先DFS一下,找出每个格子对应的块号,再套DLX的模板。
代码(1203MS):
1 #include2 #include 3 #include 4 #include 5 #include 6 using namespace std; 7 typedef long long LL; 8 9 const int MAXN = 10; 10 const int MAXC = 9 * 9 * 4 + 10; 11 const int MAXR = 9 * 9 * 9 + 10; 12 const int MAXP = MAXR * 4 + MAXC; 13 14 struct DLX { 15 int sz; 16 int sum[MAXC]; 17 int row[MAXP], col[MAXP]; 18 int left[MAXP], right[MAXP], up[MAXP], down[MAXP]; 19 int ansd, ans[MAXR], anscnt; 20 21 void init(int n) { 22 for(int i = 0; i <= n; ++i) { 23 up[i] = down[i] = i; 24 left[i] = i - 1; right[i] = i + 1; 25 } 26 left[0] = n; right[n] = 0; 27 sz = n + 1; 28 memset(sum, 0, sizeof(sum)); 29 } 30 31 void add_row(int r, vector &func) { 32 int first = sz; 33 for(size_t i = 0; i < func.size(); ++i) { 34 int c = func[i]; 35 left[sz] = sz - 1; right[sz] = sz + 1; up[sz] = up[c]; down[sz] = c; 36 down[up[c]] = sz; up[c] = sz; 37 row[sz] = r; col[sz] = c; 38 ++sum[c], ++sz; 39 } 40 left[first] = sz - 1; right[sz - 1] = first; 41 } 42 43 void remove(int c) { 44 left[right[c]] = left[c]; 45 right[left[c]] = right[c]; 46 for(int i = down[c]; i != c; i = down[i]) { 47 for(int j = right[i]; j != i; j = right[j]) 48 up[down[j]] = up[j], down[up[j]] = down[j], --sum[col[j]]; 49 } 50 } 51 52 void restore(int c) { 53 for(int i = up[c]; i != c; i = up[i]) { 54 for(int j = left[i]; j != i; j = left[j]) 55 up[down[j]] = j, down[up[j]] = j, ++sum[col[j]]; 56 } 57 left[right[c]] = c; 58 right[left[c]] = c; 59 } 60 61 bool dfs(int d) { 62 if(!right[0]) { 63 ansd = d; 64 return ++anscnt == 2; 65 } 66 int c = right[0]; 67 for(int i = right[0]; i != 0; i = right[i]) if(sum[i] < sum[c]) c = i; 68 remove(c); 69 for(int i = down[c]; i != c; i = down[i]) { 70 if(!anscnt) ans[d] = row[i]; 71 for(int j = right[i]; j != i; j = right[j]) remove(col[j]); 72 if(dfs(d + 1)) return true; 73 for(int j = left[i]; j != i; j = left[j]) restore(col[j]); 74 } 75 restore(c); 76 return false; 77 } 78 79 int solve(vector &v) { 80 v.clear(); 81 anscnt = 0; 82 dfs(0); 83 if(anscnt == 1) for(int i = 0; i < ansd; ++i) v.push_back(ans[i]); 84 return anscnt; 85 } 86 } solver; 87 88 const int SLOT = 0; 89 const int ROW = 1; 90 const int COL = 2; 91 const int SUB = 3; 92 93 int fr[] = {-1, 0, 1, 0}; 94 int fc[] = { 0, 1, 0, -1}; 95 int fp[] = { 16, 32, 64, 128}; 96 97 int mat[MAXN][MAXN]; 98 int val[MAXN][MAXN], cnt; 99 int T, n = 9;100 101 bool in_n(int x) {102 return 0 <= x && x < n;103 }104 105 void dfs(int r, int c, int p) {106 val[r][c] = p;107 for(int i = 0; i < 4; ++i) {108 int nr = r + fr[i], nc = c + fc[i];109 if(in_n(nr) && in_n(nc) && ((fp[i] & mat[r][c]) == 0) && !val[nr][nc])110 dfs(nr, nc, p);111 }112 }113 114 void print(int mat[MAXN][MAXN]) {115 for(int i = 0; i < n; ++i) {116 for(int j = 0; j < n; ++j) printf("%d", mat[i][j]);117 puts("");118 }119 }120 121 int encode(int a, int b, int c) {122 return a * 81 + b * 9 + c + 1;123 }124 125 void decode(int code, int &a, int &b, int &c) {126 --code;127 c = code % 9; code /= 9;128 b = code % 9; code /= 9;129 a = code;130 }131 132 int main() {133 scanf("%d", &T);134 for(int kase = 1; kase <= T; ++kase) {135 for(int i = 0; i < n; ++i)136 for(int j = 0; j < n; ++j) scanf("%d", &mat[i][j]);137 memset(val, 0, sizeof(val));138 cnt = 0;139 for(int i = 0; i < n; ++i)140 for(int j = 0; j < n; ++j) if(!val[i][j]) dfs(i, j, ++cnt);141 printf("Case %d:\n", kase);142 //print(val);143 solver.init(9 * 9 * 4);144 for(int r = 0; r < n; ++r)145 for(int c = 0; c < n; ++c)146 for(int i = 0; i < 4; ++i) mat[r][c] &= ~fp[i];147 //print(mat);148 for(int r = 0; r < n; ++r) for(int c = 0; c < n; ++c) for(int v = 0; v < n; ++v) {149 if(!mat[r][c] || mat[r][c] == 1 + v) {150 vector func;151 func.push_back(encode(SLOT, r, c));152 func.push_back(encode(ROW, r, v));153 func.push_back(encode(COL, c, v));154 func.push_back(encode(SUB, val[r][c] - 1, v));155 solver.add_row(encode(r, c, v), func);156 }157 }158 vector ans;159 int res = solver.solve(ans);160 if(res == 0) puts("No solution");161 if(res == 1) {162 int r, c, v;163 for(size_t i = 0; i < ans.size(); ++i) {164 decode(ans[i], r, c, v);165 mat[r][c] = 1 + v;166 }167 print(mat);168 }169 if(res == 2) puts("Multiple Solutions");170 }171 }